Cation Distribution in $(M', M)_3$ Se₄

II. (V, Ti)₃Se₄ and (Cr, V)₃Se₄

A. HAYASHI, Y. UEDA, AND K. KOSUGE

Department of Chemistry, Faculty of Science, Kyoto University, Kyoto, Japan

H. MURATA AND H. ASANO

Institute of Materials Science, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki, Japan

N. WATANABE

National Laboratory for High Energy Physics, Oho-machi, Tsukuba-gun, Ibaraki, Japan

and F. IZUMI

National Institute for Research in Inorganic Materials, Sakura-mura, Niihari-gun, Ibaraki, Japan

Received November 11, 1986; in revised form February 18, 1987

The cation distribution among the two crystallographic cation sites of the Cr_3S_4 structure was determined in VTi_2Se_4 and VCr_2Se_4 by high-resolution neutron diffraction, using Rietveld analysis. The results showed a considerable disorder but they nevertheless revealed the site preference of V atoms for the 2(a) site in both compounds. The compositional changes of the lattice parameters and the transition temperatures to the CdI_2 -type structure in $(V_xTi_{1-x})_3Se_4$ and $(Cr_xV_{1-x})_3Se_4$ were compared with those in $(Cr_xTi_{1-x})_3Se_4$ and $(Fe_xCr_{1-x})_3Se_4$, and discussed from the viewpoint of the site preference of the cation. @ 1987 Academic Press, Inc.

Introduction

Most of the 3*d*-transition metal chalcogenides with chemical formula M_3X_4 (M: 3*d*-transition metal, X: S, Se, Te) have the spinel structure or the Cr₃S₄ structure, as shown in Table I. The chalcogenide stacking is *ccp* for the spinel structure and *hcp* for the Cr₃S₄ structure. In both structures, there are two crystallographic sites for metal ions and these compounds are expressed as $(M)[M_2]X_4$ based on the distinction of sites occupied by metal ions. In the expression $(M)[M_2]X_4$, () and [] denote tetrahedral and octahedral voids in the spinel structure, respectively. In contrast, both () and [] denote octahedral voids in the Cr₃S₄ structure. The characteristic of

the Cr₃S₄ structure is that it is vacancy-ordered, which has been evidenced from the observation of the phase transition from the Cr_3S_4 to CdI_2 type at higher temperatures in several compounds (1-4). Like other compounds with similar vacancy-ordered structures based on the CdI_2 structure, M_5X_8 , M_2X_3 , M_7X_8 , etc., have also been found in several $MX-MX_2$ systems (5, 6). These structures are easily understood by following general principles. In the intermediate composition $M_{1+y}X_2$ (0 < y < 1) between MX with the NiAs structure and MX_2 with the CdI₂ structure, excess metal atoms of fraction y partially occur in the unoccupied layer (van der Waals' gap) in the CdI₂ structure and are regularly arranged because of metal-vacancy or metal-metal interactions. The Cr_3S_4 structure appears at y =0.5, and the layer stacking in this structure is expressed as $M^{F}XM^{V}XM^{F}X$..., where $M^{\rm F}$ denotes the metal layer fully occupied (4(i) sites) and M^{V} the half-filled and ordered metal layer (2(a) sites) (see Fig. 1). The unit cell is described in terms of the basic CdI₂ structure as $a_{\rm m} \approx \sqrt{3}a_{\rm h}, b_{\rm m} \approx a_{\rm h}$, and $c_{\rm m} \approx 2c_{\rm h}$, where $a_{\rm m}$, $b_{\rm m}$, and $c_{\rm m}$ are the lattice parameters of the Cr₃S₄ structure having the monoclinic space group I2/m; $a_{\rm h}$ and $c_{\rm h}$ are lattice parameters of the hexago-

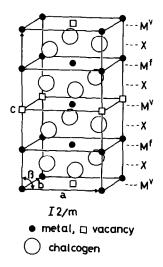


FIG. 1. Cr_3S_4 structure (I2/m).

TABLE I CRYSTAL STRUCTURE OF M_3X_4 COMPOUNDS

	М							
X	Ti	v	Сг	Mn	Fe	Co	Ni	
s		Cr ₃ S ₄	Cr ₃ S ₄	_	Spinel	Spinel	Spinel	
Se	Cr ₃ S ₄	Cr ₃ S ₄	Cr₃S₄	—	Cr ₃ S ₄	Cr ₃ S ₄	Cr ₃ S ₄	
Te	Cr ₃ S ₄	Cr_3S_4	Cr₃S₄		Cr ₃ S ₄	CdI ₂	CdI ₂	

nal CdI₂ structure.

From the structural aspect, many mixedmetal compounds $M'M_2X_4$ with the Cr₃S₄ structure have also been synthesized and their physical properties have been studied. Chevreton and Andron (7) proposed such metal-ordered structures as normal-type $(M')[M_2]X_4$ and inverse-type $(M)[M'M]X_4$ on these compounds from analogy of spinel compound, where () denotes the halffilled metal layer M^{V} and [] the filled metal layer $M^{\rm F}$. In fact, such a metal-ordered structure has been confirmed in several compounds mainly by neutron diffraction or Mössbauer spectroscopy (7-13). To understand the physical properties and chemical bonds of these compounds, it is important to know the metal-ordered structure or site preference. In the phase diagram of the ternary M'-M-X system, the compound $M'M_2X_4$ appears at the composition $x = \frac{1}{3}$ in the pseudobinary system (M'_x) M_{1-x} ₃ X_4 or $x = \frac{1}{2}$ in the system $M'_x M X_2$ (0 < x < 1). The site preference in $M'M_2X_4$ may be kept also in the pseudobinary systems $M'_3X_4 - M_3X_4$ or M'_xMX_2 . We have also systematically studied the phase diagram and physical properties of the selenide system $(M'_{x}M_{1-x})_{3}$ Se₄, because most of 3*d*transition metal selenides M_3 Se₄ crystallize in the Cr_3S_4 structure (see Table I). In a previous paper (14), it was suggested that the compositional dependence of lattice parameters in $(Cr_xTi_{1-x})_3X_4$ (X: Se, Te) gives us information about the metal-ordered structure of CrTi₂Se₄, TiCr₂Se₄, CrTi₂Te₄, and $TiCr_2Te_4$. In a succeeding paper (15), the cation distribution in CrTi₂Se₄ and TiCr₂ Se₄ was reported from Rietveld analysis of high-resolution neutron diffraction patterns, and the compositional dependence of magnetic properties in $(Cr_xTi_{1-x})_3Se_4$ was explained on the basis of the site preference of Cr ions for M^{V} layers. We proposed the existence of the compounds $(Co)[Ti_2]Se_4$, $(Ni)[Ti_2]Se_4$, and $(Ni)[V_2]Se_4$ from a recent study of their phase diagrams (16).

In this paper, we report the cation distribution in VTi₂Se₄ and VCr₂Se₄, determined from Rietveld analysis of high-resolution powder neutron diffraction patterns, together with the phase diagrams of $(V_xTi_{1-x})_3$ Se₄ and $(Cr_xV_{1-x})_3$ Se₄ systems.

Experimental

Sample preparation was reported elsewhere (14). Phase characterizations were made at room temperature by powder X-ray diffraction with monochromatic $CuK\alpha$ radiation. Phase transitions at higher temperatures were detected by high-temperature X-ray diffraction *in situ* and differential thermal analysis (DTA). In order to prevent oxidation or decomposition, samples were sealed in an evacuated silica capillary during the high-temperature X-ray diffraction measurement and in a cylindrical silica capsule during the DTA measurement. The neutron diffraction experiment was carried out with a high-resolution powder diffractometer HRP (17) at the KENS pulsed spallation neutron source in the National Laboratory for High Energy Physics. The experimental details have been reported in our previous paper (15).

Results and Discussion

Both $(V_x Ti_{1-x})_3 Se_4$ and $(Cr_x V_{1-x})_3 Se_4$ systems exhibited a solid solution with the Cr₃ S₄ structure over a whole composition range. Figures 2a and 2b show lattice parameters (I2/m: a, b, c, β) vs composition curves for both systems, determined by the least-squares method using more than 10 X-ray diffraction peaks. DTA and high-temperature X-ray measurements revealed that all the samples show a phase transition

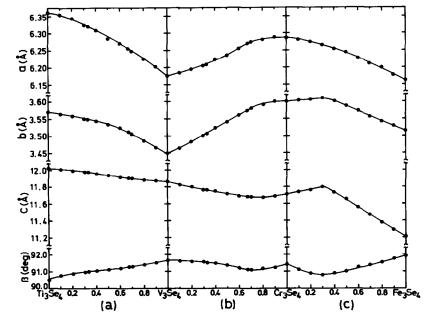


FIG. 2. Lattice parameters vs composition curves. (a) $(V_x Ti_{1-x})_3 Se_4$; (b) $(Cr_x V_{1-x})_3 Se_4$; and (c) $(Fe_x Cr_{1-x})_3 Se_4$.

from the Cr_3S_4 (monoclinic) to CdI_2 (hexagonal) type accompanied by the disordering of vacancies. The hysteresis of the transition on heating and cooling was about 10°C for all samples. Phase diagrams obtained for both systems are shown in Figs. 3a and 3b.

 VTi_2Se_4 and VCr_2Se_4 were studied by neutron diffraction. The diffraction data were analyzed by the Rietveld method (18). Figures 4a and 4b show the observed and calculated profiles of the two compounds VTi_2Se_4 and VCr_2Se_4 , respectively. The final crystallographic parameters are given in Table II. The resulting cation distributions on two sites, M^{V} and M^{F} , are $(V_{0.60}Ti_{0.40})$ $[V_{0.40}Ti_{1.60}]Se_4$ for VTi_2Se_4 and $(V_{0.55}Cr_{0.45})$ $[V_{0.45}Cr_{1.55}]Se_4$ for VCr₂Se₄. The results reveal that V atoms have a tendency to prefer the M^{V} layer in both VTi₂Se₄ and VCr₂Se₄, although the cation distribution in both compounds is relatively disordered compared to the ideal one.

In selenides, it was determined by neutron diffraction that $CrTi_2Se_4$ (15) and Fe Cr_2Se_4 (11) are normal-type compounds and that $TiCr_2Se_4$ (10, 14) is inverse type; that is, Cr ions in $CrTi_2Se_4$ and $TiCr_2Se_4$,

TABLE II

FINAL ATOMIC PARAMETERS⁴ FOR VTi₂Se₄ and VCr₂Se₄ with Estimated Standard Deviations in Parentheses

Atom	Position	x	у	z	Occupancy
<u> </u>		VTi	₂ Se ₄		
V(1)	2(a)	0	0	0	0.60(2)
Ti(1)	2(a)	0	0	0	0.40(2)
V(2)	4(i)	0.2547(8)	0.226(2)	0	0.20(2)
Ti(2)	4(<i>i</i>)	0.2547(8)	0.226(2)	0	0.80(2)
Se(1)	4(i)	0.6304(3)	0.2976(6)	0	1.0
Se(2)	4(i)	0.8861(3)	0.2235(6)	0	1.0
a' = 13	3.6153 Å; b	c = 6.2962 Å $R_{wp}^{c} = 5.15\%$	c' = 3.556	2 Å;	

		VCr	₂ Se ₄		
V(1)	2(a)	0	0	0	0.55(1)
Cr(1)	2(a)	0	0	0	0.45(1)
V(2)	4(i)	0.2586(8)	0.238(2)	0	0.22(1)
Cr(2)	4(i)	0.2586(8)	0.238(2)	0	0.78(1)
Se(1)	4(i)	0.6338(3)	0.2974(7)	0	1.0 ``
Se(2)	4(i)	0.8832(3)	0.2197(7)	0	1.0
		b' = 6.2801 Å $R_{wp}^{c} = 8.11\%$			e = 119.21°

^a In Rietveld analysis the reduced unit cell with space group B2/m was adopted. The relation between lattice parameters described in space group B2/m and I2/m is as follows: a = b', b = c', $c = (a'^2 + b'^2 + 2a'b' \cos \gamma)^{1/2}$ and $\beta = \cos^{-1}[(a' \cos \gamma + b')/c'^{1/2}]$.

^b \hat{B} = overall thermal parameter.

 ${}^{c} R_{wp} = [\Sigma_{i} w_{i} \{Y_{i}(\text{obs}) - Y_{i}(\text{cal})\}^{2} / \Sigma_{i} w_{i} \{Y_{i}(\text{obs})\}^{2}]^{1/2}$. $(Y_{i}(\text{obs})$ and $Y_{i}(\text{cal})$ are observed and calculated counts for the *i*th channel and w_{i} is a weighting factor.)

 ${}^{d}R_{B} = \Sigma_{k}[I_{k}(\text{obs}) - I_{k}(\text{cal})]/\Sigma_{k}I_{k}(\text{obs})$. $I_{k}(\text{obs})$ and $I_{k}(\text{cal})$ are observed and calculated integrated intensities for the kth reflection.

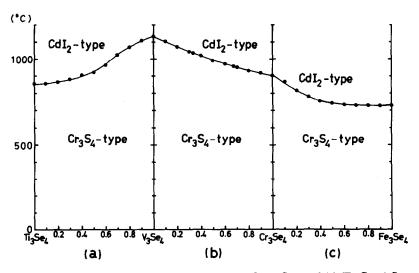


FIG. 3. Phase diagrams. (a) $(V_x Ti_{1-x})_3 Se_4$; (b) $(Cr_x V_{1-x})_3 Se_4$; and (c) $(Fe_x Cr_{1-x})_3 Se_4$.

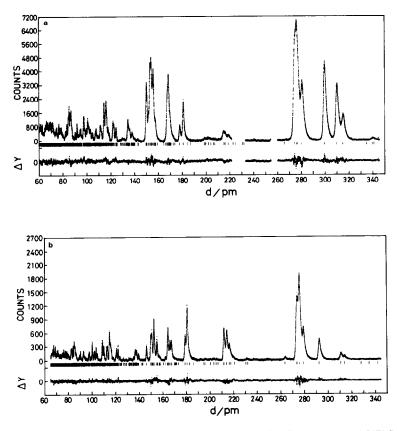


FIG. 4. Observed (dots) and calculated (solid lines) neutron diffraction patterns. (a) VTi_2Se_4 and (b) VCr_2Se_4 . ΔY shows the difference between observed and calculated counts. The vertical markers indicate Bragg positions. Diffraction data at around d = 225 and 258 pm in (a) were omitted from the pattern because very weak peaks probably because of impurities appeared in these regions.

and Fe ions in FeCr₂Se₄ preferentially occupy the M^{V} layer.

Now let us discuss the site preference or metal-ordered structure in $(Cr_xV_{1-x})_3Se_4$ and $(V_xTi_{1-x})_3Se_4$ from Δc and ΔT_c (defined below), in comparison with $(Cr_xTi_{1-x})_3Se_4$ and $(Fe_xCr_{1-x})_3Se_4$. The compositional dependence of the lattice parameters and the phase diagram for $(Fe_xCr_{1-x})_3Se_4$ (19) are shown in Figs. 2c and 3c for reference. If the site preference is retained over the whole range of composition in the pseudobinary solid solution $(M'_xM_{1-x})_3X_4$ system and M' prefers to occupy the M^{\vee} layer, the substitution in the ideal case should progress as follows:

$$0 \le x \le \frac{1}{3} \qquad (M'_{3x}M_{1-3x})[M_2]X_4$$
$$\frac{1}{3} \le x \le 1 \qquad (M')[M'_{3x-1}M_{3-3x}]X_4$$

with a turning point at $x = \frac{1}{3}(M'M_2X_4)$. As a measure of the site preference of metal ions, the compositional dependence of Δc^1 = [(observed *c*-axis) - (Vegard's law)] is shown in Fig. 5 for $(V_x Ti_{1-x})_3Se_4$ and $(V_x Cr_{1-x})_3Se_4$, together with $(Cr_x Ti_{1-x})_3Se_4$ and $(Fe_x Cr_{1-x})_3Se_4$. In $(Cr_x Ti_{1-x})_3Se_4$ and $(Fe_x$

¹ The c parameter was adopted to discuss the deviation from the Vegard's law because it can be more precisely determined compared to the other lattice parameters using high angle (00*l*) diffraction with stronger intensity and because it is more sensitive to changes in composition.

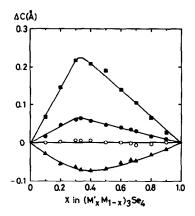


FIG. 5. Δc (see the text) vs composition curves of $(M'_x M_{1-x})_3 \text{Se}_4$. \bigcirc , $(V_x \text{Ti}_{1-x})_3 \text{Se}_4$; \blacktriangle , $(V_x \text{Cr}_{1-x})_3 \text{Se}_4$; \blacklozenge , $(\text{Cr}_x \text{Ti}_{1-x})_3 \text{Se}_4$; \blacksquare , $(\text{Fe}_x \text{Cr}_{1-x})_3 \text{Se}_4$.

 Cr_{1-x} ₃Se₄, Δc shows a linear change in the composition range for both $0 < x < \frac{1}{3}$ and $\frac{1}{3}$ < x < 1, as just obeying the Vegard's law between the intermediate compound CrTi₂ Se_4 or $FeCr_2Se_4$ and the end members in each system. On the other hand, $\Delta c \simeq 0$ over the whole composition range in (V_x) Ti_{1-x} Se₄ and there is a gradual change with a minimum around x = 0.4 in (V_x) $(Cr_{1-r})_3$ Se₄. These observations suggest that substitution in both systems does not progress with so clear a site preference as in the other two systems. This is consistent with the results that the cation distribution observed in VTi₂Se₄ and VCr₂Se₄ is rather random.

In addition to the vacancy disordering, disordering of metal arrangement among the M^{v} and M^{F} layers can also be expected at a critical temperature T_{t} ; the degree of order naturally decreases with increasing temperature. The observed cation distribution corresponds to the degree of order at the temperature where the sample was annealed or at the lowest temperature where the diffusion of metal ions was possible. In DTA measurements, no anomaly corresponding to this transition was observed up to 1100°C in all samples. This means that the transition is of second order or T_{t} is above 1100°C. The latter case is ruled out at least in VTi_2Se_4 and VCr_2Se_4 , as judged by the results that the observed cation distribution of the samples prepared at temperature as low as 300°C is rather random.

Figure 6 shows the deviation ΔT defined as follows:

$$\Delta T = T_{\rm c} - [(1 - x)T_{\rm c1} + xT_{\rm c2}],$$

where x is the composition in $(M'_r M_{1-r})_3 X_4$ system, T_c is the transition temperature from the Cr_3S_4 to CdI_2 type and T_{c1} and T_{c2} are T_c for x = 0 (M_3X_4) and x = 1 (M'_3X_4), respectively. The curves show a minimum around $x = \frac{1}{3}$ in $(Cr_rTi_{1-r})_3Se_4$ and $(Fe_r)_3Se_4$ $(Cr_{1-r})_3$ Se₄ systems and around central composition $(x = \frac{1}{2})$ in $(V_x Ti_{1-x})_3 Se_4$ and $(V_x$ Cr_{1-x} Se₄ systems. It is general in the solid solution system that ΔT changes smoothly with a minimum or maximum around central composition in the case that no intermediate compound exists. If a compound exists at an intermediate composition, ΔT changes in the same way between the intermediate compound and the end members. $(Cr_xTi_{1-x})_3Se_4$ and $(Fe_xCr_{1-x})_3Se_4$ systems seem to belong to the latter, having CrTi₂ Se₄ and FeCr₂Se₄ with the metal-ordered structure as an intermediate compound. The former may be the case for $(V_x Ti_{1-x})_3$

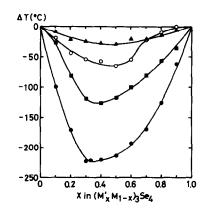


FIG. 6. ΔT (see the text) vs composition curves of $(M'_x M_{1-x})_3 Se_4$. \bigcirc , $(V_x Ti_{1-x})_3 Se_4$; \blacktriangle , $(V_x Cr_{1-x})_3 Se_4$; \blacklozenge , $(Cr_x Ti_{1-x})_3 Se_4$; \Box , $(Fe_x Cr_{1-x})_3 Se_4$.

Se₄ and $(Cr_xV_{1-x})_3Se_4$. Therefore, T_t is likely to be higher than T_c in $(Cr_xTi_{1-x})_3Se_4$ and $(Fe_xCr_{1-x})_3Se_4$, and lower in $(V_xTi_{1-x})_3$ Se₄ and $(Cr_xV_{1-x})_3Se_4$. This is consistent with the results that cation distributions in VTi₂Se₄ and VCr₂Se₄ are more disordered than in CrTi₂Se₄ and TiCr₂Se₄ at the same annealing temperature of 300°C.

In conclusion, the cation distributions in VTi₂Se₄ and VCr₂Se₄ show considerable disorder but they nevertheless reveal the preference of V atoms for the M^{V} layer (2(*a*) sites). Further, Fe ions selectively occupy the M^{V} layer in (Fe_xCr_{1-x})₃Se₄.

We have, at present, no explanation of the origin of such site preference; a key may be obtained when the site preference on all compounds with the Cr_3S_4 structure and the physical properties of those compounds are made clear.

A neutron diffraction study at various temperatures to confirm the transition to the metal-disordered state, as well as a Mössbauer study of the compounds containing Fe as a constituent element to determine the cation distribution or the site preference, is now in progress.

References

- Y. OKA, K. KOSUGE, AND S. KACHI, J. Solid State Chem. 23, 11 (1978).
- 2. H. WADA, Bull. Chem. Soc. Japan 52, 2918 (1979).

- T. OHTANI, R. FUJIMOTO, H. YOSHINAGA, M. NAKAHIRA, AND Y. UEDA, J. Solid State Chem. 48, 161 (1983).
- T. OHTANI, S. ONOUE, AND M. NAKAHIRA, Mater. Res. Bull. 19, 1367 (1984).
- 5. F. JELLINEK, Acta Crystallogr. 10, 620 (1957).
- M. CHEVRETON, Bull. Soc. Fr. Minéral. Cristallogr. 90, 592 (1967).
- M. CHEVRETON AND B. ANDRON, C.R. Acad. Sci. Ser. B 264, 316 (1967).
- B. ANDRON, G. BÉRODIAS, M. CHEVRETON, AND P. MOLLARD, C.R. Acad. Sci. Ser. B 263, 621 (1966).
- 9. B. ANDRON AND E. F. BERTAUT, J. Phys. (Paris) 27, 619 (1966).
- B. LAMBERT-ANDRON, G. BÉRODIAS, AND M. CHEVRETON, Bull. Soc. Fr. Miner. Cristallogr. 91, 88 (1968).
- 11. K. ADACHI, K. SATO, AND K. KOJIMA, Mem. Fac. Eng. Nagoya Univ. 22, 253 (1970).
- 12. I. KAWADA AND H. WADA, *Physica B* 105, 223 (1981).
- 13. H. NOZAKI, H. WADA, AND H. YAMAMURA, Solid State Commun. 44, 63 (1982).
- 14. Y. UEDA, K. KOSUGE, M. URABAYASHI, A. HAY-ASHI, S. KACHI, AND S. KAWANO, J. Solid State Chem. 56, 263 (1985).
- A. HAYASHI, Y. UEDA, K. KOSUGE, H. MURATA, H. ASANO, N. WATANABE, AND F. IZUMI, J. Solid State Chem. 67, 346 (1987).
- A. HAYASHI, K. IMADA, K. INOUE, Y. UEDA, AND K. KOSUGE, Bull. Inst. Chem. Res. Kyoto Univ. 64, 186 (1986).
- N. WATANABE, H. ASANO, H. IWASA, S. SATO, H. MURATA, T. FUKIURA, S. TOMIYOSHI, F. IZUMI, AND K. INOUE, "KENS Report-V, KEK Progress Report," 84-2, p. 581 (1982).
- F. IZUMI, J. Crystallogr. Soc. Japan 27, 23 (1985) [in Japanese].
- 19. In preparation.